LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - NOVEMBER 2023

PST 2501 – ESTIMATION THEORY

Date: 31-10-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

SECTION -A

1.Define statistic and provide an example.

Answer ALL the questions.

2. Let X_1, X_2, X_n be i.i.d. $B(1,\theta)$, $0 < \theta < 1$. Obtain a sufficient statistic for θ .

3.Let X₁,X₂ be i.i.d. random variables from Poisson P(θ), $\theta > 0$. Show that T = X₁ + 2X₂ is not sufficient for θ .

- 4. Define exponential family of distributions.
- 5.Define loss function and give an example.
- 6. When a family of distributions is called complete?

7. When a statistic is called ancillary? Give an example.

8. Write any two properties of M.L.E.

9. Define CAN estimator and provide an example.

10.Write a note on Jackknife method.

SECTION -B

Answer any FIVE questions.

- 11. If $\{\delta n\}$ is a sequence of UMVUEs and δn converges to δ almost surely as $n \rightarrow \infty$, then show that δ is UMVUE.
- 12.State and prove the Neyman-Factorization theorem.
- 13. Let X~ U(0, θ), $\theta > 0$. Assume that the prior distribution of Θ is h(θ) = θ e - θ , , $\theta > 0$. Find Bayesian estimator of θ if loss function is (a) squared error and (b) absolute error.
 - (4+4)

- 14. (a) Establish the invariance property of CAN estimator. (4)(b) State and prove Basu's theorem. (4)
- 15. Show that {N (θ ,1), $\theta \in R$ } is complete.
- 16.Let X₁,X₂,...Xn be a random sample of size n from P(θ), θ > 0.
 (a) Obtain MVBE of θ. (6)
 (b) Suggest MVBE of aθ + b, where a and b are constants and a≠0. (2)
- 17. (a) State and prove Lehmann-Scheffe theorem. (4)
 (b)Let X₁,X₂,...Xn be a random sample of size n from
 f(x;θ) = exp{ -(x-θ)}, x ≥ θ, zero elsewhere. Find UMVUE of θ. (4)
- 18. (a) Show with an example that MLE is not sufficient. (4)
 (b) Let X₁,X₂,...X_n be a random sample from N(θ,1), θ ∈R. Find a consistent estimator for θ. (4)

Max. : 100 Marks

10 x 2 = 20 Marks

5 x 8 = 40 Marks

SECTION-C

Answer any TWO questions

19.(a) Let X be a discrete random variable with the probability mass function $P_{\theta}(x) = \theta$, x = -1 and $P_{\theta}(x) = (1-\theta)^2 \theta^x$, $x = 0, 1, 2, ..., 0 < \theta < 1$.

 $P_{\theta}(x) = \theta$, x = -1 and $P_{\theta}(x) = (1-\theta)^2 \theta^x$, x = 0, 1, 2..., Find (i) U_0 (ii) U. (5+5)

- (b) Let $X \sim DU\{1,2,3,...N\}$, N = 2,3,4... Find UMRUE using calculus approach. (10)
- 20. (a)State and prove the necessary and sufficient condition for an estimator to be UMVUE using uncorrelated approach. (14)

(b) Show that UMVUE, if exists, is unique. (6)

- 21. Let X₁,X₂,...Xn be a random sample of size n from N(μ,σ^2), where μ and σ^2 are unknown. Find UMVUE of (i) μ (ii) σ^2 and (iii) μ^2 / σ^2 . (5+5+10)
- 22.(a) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1)$, $\theta \in \mathbb{R}$. Show that sample mean and variance are independent using Basu's theorem. (12)

(b) Establish the invariance property of MLE and illustrate with an example. (8)

##############